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ABSTRACT 

The technological advancement in all countries leads to massive energy demand. The energy 
trading companies struggle daily to meet their customers’ power demands. For a good 
quality, disturbance-free, and reliable power supply, one must balance electricity generation 

and consumption at the grid level. There is 
a profound change in distribution networks 
due to the intervention of renewable 
energy generation and grid interactions. 
Renewable energy sources like solar and 
wind depend on environmental factors and 
are subject to unpredictable variations. 
Earlier, energy distribution companies 
faced a significant challenge in demand 
forecasting since it is often unpredictable. 
With the prediction of the ever-varying 
power from renewable sources, the power 
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generation and distribution agencies are facing a challenge in supply-side predictions. 
Several forecasting techniques have evolved, and machine learning techniques like the 
model predictive controller are suitable for arduous tasks like predicting weather-dependent 
power generation in advance. This paper employs a Model Predictive Controller (MPC) to 
predict the solar array’s power. The proposed method also includes a system identification 
algorithm, which helps acquire, format, validate, and identify the pattern based on the raw 
data obtained from a PV system. Autocorrelation and cross-correlation value between input 
and predicted output 0.02 and 0.15. The model predictive controller helps to recognize the 
future response of the corresponding PV plant over a specific prediction horizon. The error 
variation of the predicted values from the actual values for the proposed system is 0.8. 
The performance analysis of the developed model is compared with the former existing 
techniques, and the role and aptness of the proposed system in smart grid digitization is 
also discussed.

Keywords: Energy demand, future response, model predictive control, performance analysis, prediction, 
renewable energy, smart grid, system identification

INTRODUCTION

The growing awareness of green energy is moving the global power sector towards 
renewables. The variability in renewable-based power generation with respect to time 
needs to be predicted in advance to plan the power distribution properly. This universal 
transformation headed for renewable energy sources (RES) has motivated the progress of 
photovoltaic (PV) panels. As per the prediction by (Khalil, 1981), the opportunities for 
solar photovoltaic applications are growing exponentially. For instance, the production 
costs of generating electricity from solar PV panels have dropped drastically, but the energy 
conversion efficiency is increasing. In particular, between 2010 and 2017, the electricity 
cost of large-scale PV panels decreased by 73%, as described by (IRENA, 2018). The 
industries also seek carbon-neutral energy purchase plans (Jin et al.,  2018). The increasing 
efficiency and decreasing cost have made PV panels a competitive alternative for non-
renewable energy sources in many countries (Andrade & Bessa, 2017). Energy footprints 
have become essential in manufacturing systems (Jeon et al., 2015).

The energy output from the PV panel ultimately depends on weather conditions like 
cloud envelopes and solar radiation. It makes the energy output produced by the PV 
panels unpredictable and uneven (Suresh et al., 2013). So, forecasting the power output 
of solar power plants has become crucial for energy traders, who get attracted to long-
time horizons, typically day-ahead forecasting, since most electric power is traded on the 
day-ahead marketplace (Marimuthu & Kirubakaran, 2014). As a result, the profitability 
of these operations depends on the capability of forecasting the fluctuated solar PV panel 



71Pertanika J. Sci. & Technol. 32 (S1): 69 - 92 (2024)

Solar Energy Prediction Based on Intelligent Predictive Controller Algorithm

energy output precisely. Though the demand for accurate and well-organized solar PV panel 
output power prediction is evident, the consequence is far from trivial. There are many 
technical hitches in the existing research. One apparent trouble is the inherited deviation of 
weather, making accurate weather forecasting challenging (Sassi & Oulamara, 2017). Many 
technologies are available for forecasting, including mathematical calculations based on 
weather data, artificial intelligence-based techniques, and a combination of both methods 
(Gopinath et al., 2014). This paper has attempted to employ a controller to predict power 
output. The primary objectives of this paper are to design an intelligent predictive control 
technique for solar power generators and simulate and conduct performance analysis for 
the same.

Literature Review

Power forecasting has become a crucial component of the electricity sector. It helps load 
scheduling, electricity price-fixing, and other related decision-making processes. Solar 
energy, a predominant source in tropical countries like India, is of more importance. Hence, 
the time ahead prediction is very vital. This process of prediction can be done either directly 
or indirectly. The direct method involves systems that predict the power for a given solar 
thermal or photovoltaic system (Accenture, 2016). The indirect process involves predicting 
solar irradiance or insolation, which is the necessary input to the power generating systems 
(Khosravi et al., 2018; Ozoegwu, 2019; Zendehboudi et al., 2018). These systems predict 
the global horizontal irradiance and diffuse horizontal irradiance falling on the earth at 
a particulate latitude and longitude (Guermoui et al., 2018). The electrical power can be 
predicted based on the pre-predicted solar irradiance. 

Also, the parameters involved in power prediction for solar thermal-based power 
generation systems differ from those of the photovoltaic system (Prabhu et al., 2015). In 
a solar thermal system, heat is of prime importance because the system generates heat 
from sunlight, which is then applied to the heat engine to generate power (Rodat et al., 
2016). Whereas in photovoltaic-based power generation, sunlight is directly converted 
into electricity. Different methods are in practice to predict the output power of a solar 
photovoltaic system, and they can be classified as numerical methods based on regression, 
correlation, and other mathematical calculations, intelligent methods like neural networks, 
fuzzy logic, model predictive controller, and hybrid methods which are the combination 
of the two mentioned above (Moon & Park, 2014).

Firstly, the numerical calculation methods are found to be in use widely. The 
regression-based systems use the relationship between atmospheric parameters like weather, 
temperature, irradiance, and output power to manipulate the prediction (Kuhe et al., 2021). 
Multiple linear regression is applied to predict power by fitting the variables into the linear 
equation derived from the historical data (Abuella & Chowdhury, 2015). Wavelet transform 
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is a mathematical function that analyzes time series categorization and pattern recognition 
in machine learning. It significantly impacts solving the non-linearity of solar photovoltaic 
systems and predicts the output power based on time series analysis (Mandal et al., 2012). 

Secondly, intelligent systems are emerging at a rapid pace due to the advantages they 
offer. Artificial neural networks simulate the functions of the human brain to perform 
a task. ANN-based prediction models work by studying the input-output relationship 
(Zafarani et al., 2018). The network automatically adjusts its weights and biases in line 
with the input and output parameter relationships. This method involves a vast amount 
of historical statistics for better training the network. They can be designed efficiently in 
MATLAB through codes or built-in applications (Ehsan et al., 2014; Mandal et al., 2012). 
Fuzzy logic-based prediction works on IF-THEN rules designed by manipulating how the 
system works (Ncane & Saha, 2019). The system requires translating the input variables 
into fuzzy, understandable form and retranslating the output again. So, the power prediction 
in this model needed precise rule database design (Chugh et al., 2015). 

Thirdly, the models can be combined to fit the needs of the required system. Hybrid 
models used for solar power prediction combine one or more methods or technology to 
do the task (Das et al., 2023). The combination can be intelligent—hybrid or numerical 
intelligent hybrid (Aliberti et al., 2018). The first case of combining two or more intelligent 
techniques is discussed below. The artificial neuro-fuzzy inference system groups artificial 
neural networks and fuzzy controllers (Raja et al., 2023). In this hybrid, the artificial 
neural networks determine the fuzzy controller’s rules, making the design process less 
complicated. The forecasting system with ANFIS has combined advantages of both 
Artificial Neural Networks (ANN) and fuzzy logic (Frei, 2008).

However, the Adaptive Network-based Fuzzy Inference System (ANFIS) can be 
integrated with previous soft computing techniques such as particle swarm optimization or 
genetic algorithm for forecasting (Guermoui et al., 2018). The particle swarm optimization 
method is a population-based optimization algorithm stimulated by nature. It works by 
computing the movement of particles in a given space at a time and velocity (Yadav et al., 
2019b). A genetic algorithm is an evolutionary algorithm that produces or determines high-
quality outputs and works like human gene selection strategies like selection, mutation, 
and crossover (Padmanathan et al., 2019). This technology can be combined with ANFIS 
predictors to optimize the data sets for ANFIS training (Yadav et al., 2019a). Also, the three 
techniques can be combined for predicting solar photovoltaic power (Semero et al., 2018).

The numerical-intelligent hybrids are the one that combines one or more mathematical 
and intelligent techniques for task completion. A Binary Genetic Algorithm (GA) through 
the Gaussian process regression model-based suitability function can also determine 
a predictor’s high-impact input parameters (Kenning, 2016). An integrated hybrid 
methodology uniting Particle Swarm Optimization (PSO) and GA can optimize an 
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ANFIS and will contribute more towards the performance enhancement of the predictor 
(Viswavandya & Mohanty, 2018).

Another numerical-intelligent hybrid forecasting model connects the wavelet transform 
(WT), adaptive neuro-fuzzy inference system (ANFIS), and also with hybrid firefly and 
particle swarm optimization algorithm (HFPSO) (Abdullah et al., 2019; Karan, 2019; 
Lund et al., 2019; Taki et al., 2019), where the wavelet transform reduces noise in both 
the meteorological and solar power data. ANFIS is the predictor, whereas the HFPSO 
is the combination of the firefly (FF) and particle swarm optimization (PSO) algorithm, 
which is engaged in optimizing the input parameters of the ANFIS to enhance the accuracy 
(Oldewurtel et al., 2012). Season-based models with self-evolving algorithms can be 
designed by integrating evolutionary seasonal decomposition least-square support vector 
regression (ESDLS-SVR) (Lin & Pai, 2016). This method combines three technologies: 
empirical mode decomposition, least square method, and support vector machine. Empirical 
Mode Decomposition (EMD) processes non-linear series through time-space analysis, and 
the support vector machine is a discriminative classifier trained by the supervised learning 
process (Vinayagar et al., 2022).

Finally, this paper proposes a solar output power predictor based on model predictive 
controllers. Model predictive controllers are widely employed because it is an optimization-
based strategy that identifies the control inputs that affect the outputs over a given time 
frame (Mikhaylidi et al., 2015). The forecasts can be obtained by applying the Model 
Predictive Controller (MPC) to the solar photovoltaic system (Arnold & Andersson, 2011). 
The MPCs are extensively employed to control predicted energy demand and supply in-
home and micro-grid management systems (Hernández-hernández et al., 2017). A receding 
horizon MPC Scheme solves the comfort tracking problem by considering solar outputs 
and thermal inertia as a second-order state-space model designed for a generic building 
studied and employed in Spain (Enríquez et al., 2016). The other applications of MPCs in 
the Energy Management System (EMS) include optimal operation schemes, forecasting, 
cost minimization, and energy optimization (Lee et al., 2018). MPC-enabled EMSs can 
help in optimal scheduling for end-user smart appliances, heating or cooling devices, local 
power generation devices for residential needs, weather-dependent generation and demand 
forecasts, electric pricing, and technical and operative constraints (Parisio et al., 2015). 
Unlike the methods discussed above, The papers aim to simplify the predictor design and 
establish an input-output relationship-based prediction model. The comparison of different 
strategies employed and their findings are reported in Table 1.

Role of Forecasting in Digitization of Smart Grid. Society today depends on a wide range 
of digital technologies that consume more power. So, the heavily industrialized nations 
accommodate renewable energy to meet the growing power needs, infrastructure security, 
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and balancing climate problems. However, this integration process has more challenges 
in the control paradigm of the grid and transmission activities (Yaniktepe et al., 2017). It 
demands a robust and automated grid technology with a bidirectional flow of electricity 
and information. Many countries are on the verge of modernizing their existing grids into 
smart grids and deploying micro-grids for decentralized power generation and distribution 
(Taticchi et al., 2015). The need of the hour requires a sound policy for deploying smart 
grids. These policies shall include regulations for power generation and finance models, 
such as regulatory targets, and address the data requirements, renewable energy credits, and 
different interconnection tariffs and utility subsidies (Brown & Zhou, 2013; NEP, 2017).

The smart grid is an ‘‘electricity network that can intelligently include the behavior 
and actions of all consumers connected to it—generators, customers and those that do 
both—that efficiently distribute sustainable, economical and secure electricity supplies’’ 
stated by the European Union for smart grids (India Smart Grid Forum, 2019). Customers 
are the active players in an electricity system, and forecasting the power generation can 
help them contribute more towards power savings and peak demands (Vassiliadis, 2000). 

Table 1
The comparison of different methods employed and their findings

Reference Method Findings
Yadav et al., 2019b PSO ANFIS PSO is employed to optimize the parameters and rules 

for ANFIS
Ehsan et al., 2014 ANN ANN is trained with the back-propagation algorithm.
Semero et al., 2018 GA- PSO-ANFIS The design involves three soft computing techniques, 

adding to the computational complexity.
Viswavandya and 
Mohanty, 2018

Fuzzy Logic & ANFIS  Fuzzy shows better performance than ANN in the case 
proposed.

Abdullah et al., 2019 HFPSO – WT ANFIS The HFPSO is used to optimize the training data, and 
the WT is availed to optimize the ANFIS parameters.

Chugh et al., 2015 Fuzzy Logic The predictive system has less design complexity and 
better performance.

Yadav et al., 2019b PSO -ANFIS Particle swarm optimization is applied to optimize the 
performance of ANFIS.

Abuella and 
Chowdhury, 2015

MLRA Multiple linear regression analysis involves complex 
calculations, and the performance is low compared to 
intelligent techniques.

Mandal et al., 2012 WT-BPNN &
WT-RBFNN  

Two ANN-based models are compared, and the wavelet 
transform is used for data set optimization.

Ncane and Saha, 2019 Fuzzy & ANN Fuzzy logic and neural network-based models are 
compared.

Yadav et al., 2019a GA-ANFIS A genetic algorithm is used to enhance the performance 
of the ANFIS predictor.

Lin and Pai 2016 ESDLS-SVR The method evolves according to seasonal variations 
and performs better in forthcoming years.
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Hybridizing renewable energy and energy storage facilities with an existing grid would 
boost the grid’s potential, but control strategies are required (Vigneshwari et al., 2016). 
The above data includes the forecasted data, which is highly crucial for developing state-
of-the-art energy management systems.

The role played by different countries in digitizing the energy sector was reported 
in 2017. According to it, the USA prefers policies based on environmental implications; 
China focuses on strengthening policies on the supply side. European Union aims to install 
smart meters in 80% of houses by 2020, while Japan strives to reduce GHG emissions by 
30% by 2030. In contrast, Denmark has demonstrated the advantages of a smart grid for 
the country’s prosperity (Zame et al., 2018).

An extensive study on the Indian perspective of solar photovoltaic (PV) systems has 
been done to find the acceptability of solar PV systems among the citizens of the nation 
and the hurdles in retrofitting new energy technologies in the country (Padmanathan et 
al., 2019). The smart grid within the Indian context and the factors influencing the micro-
grid costs, such as distributed generation assets, grid automation, micro-grid optimization 
software, development and installation charges, and energy storage, were discussed by 
Kumari (2017). The author also suggests that microgrids will help in decreasing power 
costs. India’s first micro-grid was at UpariBabhan, Rajasthan, with a generation capacity 
15.78kW and consumption rates of 10.43kW (Gupta, 2018). The industries to deploy 
microgrids in the next five years based on Zpryme and IEEE surveys are given in Table 2.

Different Smart grid topologies are discussed by Singh et al. (2015), which include 
radial grid, mesh grid, and ring grid. The authors have also presented a smart micro-

Table 2
The industries to deploy micro-grids in the next five 
years based on Zpryme and IEEE survey 

Industry Possibility
Health Care 44%
Military 43%
Government  (non-military) 40%
Utilities 39%
Manufacturing 37%
Residential 34%
Agriculture 31%
Education 27%
Transportation 23%
Mining 19%
Construction 14%
Retail 11%
Other 4%

grid model with 300W to 1 KW SPVS, 
an intellectual bidirectional converter turn 
out Sinusoidal Pulse Width Modulation 
(SPWM) AC power of 230 Volt, 50 Hz, 
and 1800Wh battery storage unit which 
depicts power savings up to 50% or more. 
Lampropoulos et al. (2010) discuss how 
load and generation forecasting could 
help develop small, decentralized power 
generation units through data availability, 
defining user groups, and data process.

Forecasting is  now becoming a 
mandatory power management component 
as the grids are digitized. It is evident that 
smart grids make power management easy, 
transparent, hassle-free, and economical 
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(Sivaneasan et al., 2017). These advantages of the smart grids can be made possible only 
with the forecast data of the power generation units. Hence, energy forecasting contributes 
more towards the electricity value chain presumably. Though numerous technologies 
are available for power forecasting, not all technologies always hold good for all grids 
(Ramachandra et al., 2005). The model predictive controller discussed here has a good 
adaptability range and can be reprogrammed easily for different grid specifications at 
low computation cost and complexity. Hence, this work applies it to forecasting the solar 
photovoltaic power generation.

MATERIALS AND METHODS

The day ahead forecast model reported in this research is designed for a 1 kW grid-
connected solar power plant at Gandhigram Rural Institute (Latitude: 10.277565o, 
Longitude: 77.936200o), an educational institute in India. The 1 KW plant is designed with 
4 Rene Sola JC255m-24/Bb modules connected in series with a conversion efficiency of 
15.7% and an area of 6.1 m2. The system data acquisition has been done by ZeverCom 
acquisition systems and stored in the cloud.

Solar energy prediction is becoming a significant problem in the framework of 
renewable energy sources (RES), so Machine Learning Algorithms are employed more 
for this process. This paper proposed a consequential methodology based on machine 
learning algorithms to accomplish realistic and perfect results, which includes system 
identification and model predictive control techniques. The block diagram of the proposed 
system is represented in Figure 1.

Figure 1. Block diagram of the proposed system
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The first step in the process is data collection, which includes recording the raw weather 
data and the power production at the Gandhigram Rural Institute (GRI) 1 kW grid-connected 
solar power plant to get significant numeric values. The power data is predicted from the 
weather data. The second step in the process is data mining. The collected data is processed 
to fix redundancy errors missing data issues, and remove outcasts. It performs correlation 
analysis among the weather features and the energy output to get rid of hopeless features. 

The third step is to apply the data to the MPC controller. The MPC Controller predicts 
and analyses the performances of the proposed system with the aid of soft computing 
algorithms. The system identification tool and model predictive controller (MPC) approach 
are used to recognize the pattern of collected data and envisage future potential and 
fluctuations. Hence, the specific features are imported as the input source for MPC, which 
is to be adjusted and controlled for solar radiation prediction problems.

The final step is to analyze the performance of the designed MPC controller. A steady-
state error evaluation determines the performance of the proposed system. The steady-state 
error is the deviation of the control system’s output from the input response in the limit 
while time goes to infinity (i.e.) once the response has reached a steady state. The steady-
state error for the proposed control system is given by Equation 1 (Ramedani et al., 2013).Ramedani et al., 2013). 

 𝐸𝐸(∞) =  lim
𝑠𝑠→0

𝑠𝑠 𝐸𝐸(𝑠𝑠) = lim
𝑠𝑠→0

𝑠𝑠 𝑅𝑅(𝑠𝑠)
1+𝐺𝐺(𝑠𝑠)

        (1)

Where R(s) is the Laplace transform of the reference input signal, E(s) is the error signal, 
G(s) is the plant of the system, and Y(s) is the Laplace transform of the output signal.

PROPOSED PREDICTION METHOD

System Identification Algorithm

Identifying a system is required to obtain corrective measures to improve the overall system 
performance. System identification is an approach that provides valuable techniques for 
analyzing the system properties, performing simulations, understanding the experimental 
phenomena (machine learning process), predicting events in the future (time series 
analysis), and obtaining a system model of signal in filter design (signal processing 
techniques). The ultimate purpose of the system identification process is to build a UPA 
model from a system’s offered input and output data.

Therefore, the procedure is to pick a particular input u, apply it to the system, and 
then measure the system response y. From this input/output data (u and y), a model, a 
differential/difference equation, or transfer functions can be obtained. A transfer function 
correlates a control system’s input and output signal for all possible input values. The 
second-order transfer functions are commonly used in convention for a dynamic system 
to exhibit oscillations and are usually represented as Equation 2 (Liu et al., 2018). 
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G(s) =
𝑏𝑏0

𝑠𝑠2 + 𝑎𝑎1𝑠𝑠 + 𝑎𝑎0
        (2)

where G(s) is the transfer function of the system.
Also, the transfer function obtained from the real-time data utilized for the design of 

the solar power predictor is given by Equation 3.

G(s) =
0.5495 𝑠𝑠2 + 1.8 𝑠𝑠 + 5.766

𝑠𝑠3 + 2.078 𝑠𝑠2 + 11.31 𝑠𝑠 + 7.769
      (3)

This transfer function was obtained from physical modeling and data collection. The 
data from the controller was taken as an output, and the input was taken from the panel 
simulation. In a modeling task, the following steps are employed in sequence: (1) collection 
of prior information of the system, (2) selection of the model set and model structure, (3) 
experimental design and collection of data, and (4) model parameter estimation and model 
validation process. The phases of the system identification procedure are shown in Figure 2. 

Figure 2. Stages of the system identification procedure
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objective function, J, the manipulated variables, u(k), at the k-th sampling instant, must 
be considered. Equality and inequality constraints with the measured disturbances were 
integrated into the control calculations (Jeon et al., 2015). The designed manipulated 
variables are realized as a reference value or a set point for lower-level control loop 
processes.

Figure 3. Model Predictive Controller (MPC) structure
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The sampling-based MPC systems keep the control signal constant over the interval 
[t,t+h]. The value of h can then be considered as the sampling interval, and the prediction 
horizon can be a small number of sampling intervals. It can reduce the computational power 
required to employ a model predictive controller (Halvgaard et al., 2012).

Only the initial measure of the process control system strategy is executed. The state 
of the plant is tested again, and the calculations are repeated starting from the new current 
state, which in turn yields a new control and a new predicted state path (Gonela et al., 
2019). The prediction horizon that remains being shifted forward and meant for this re-
computation technique, the Model Predictive Controller (MPC), is also known as Receding 
Horizon Control (RHC) (Alqahtani et al., 2016).

RESULTS AND DISCUSSION

System Identification Fitness

The real-time sample data have been collected from the solar power plant system under 
various conditions through Zever Solar Data logging systems for linear system fitness, 
and the data have been taken for estimation and validation. Figure 6 shows the simulated 
result of the selected model with the measured output obtained from the MATLAB 
platform. The system identification tool preferred showing the residual analysis results 
for every chosen model. The validation data set computed the prediction errors or the 
residuals (Arnold & Andersson, 2011). The correlation functions are shown in Figure 7. 
Graphical User Interface in the system identification tool allows us to view and analyze 
the linear/non-linear system responses. The transient response of the system obtained 
from the MATLAB software is represented in Figure 8. Correlation analysis identifies the 
fascinating relationships in data and helps us realize the relevance of attributes concerning 

Figure 5. The receding horizon concept shows an optimization problem (Shahriar et al., 2013)
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the objectives. It helps optimize the input variables and the data size, which will help 
in memory reduction. Autocorrelation and cross-correlation values between input and 
predicted output are 0.02 and 0.15 (Enríquez et al., 2016).

Model Predictive Control (MPC)

 The transfer function obtained from the system identification tool is imported into the MPC 
tool. MPC offers a better understanding of the experimental phenomena (machine learning 
process), is excellent in predicting events in the future (time series analysis), and makes 
it easy to obtain a system model of signal in filter design (signal processing techniques) 
(Basallo et al., 2017).

The control actions of providing values for horizon, constraints, and adjusting the 
weights were done accordingly in the MPC tool based on our required control action. 
Figure 9 shows the MPC structure for a solar power plant system. By importing a plant 
model (or controller) in the MATLAB MPC tool, the graphic shows the count for the five 
possible signal types (Godina et al., 2018). The overall result for the solar power plant 
System design by MPC in MATLAB/Simulink is shown in Figure 10.

As the simulation runs, the plant output and the reference signal are displayed, and 
the MPC response is shown in Figure 11 and Figure 12, representing the step response of 
a dynamic system model to a step input of unit amplitude. 

The performance index is a steady-state error, defined as the error between the power 
response and the predicted power response, with a value of 0.8. Hence, Figure 12 gives 
a solution for an optimization problem to find the optimal control action that drives the 
response of predicted plant output to the desired set-point as close as possible. The system 
identification process contributes to the proper functioning of the MPC controller, which 
performs the prediction. The System Identification Process (SIP) and MPC complement 
each other for better efficiency.

The performance of the proposed predictor model can be well understood from the 
results. The error variation of the predicted values from the actual values for the proposed 
system is 0.8. Achieving the error of such a low value with very few datasets describes the 
efficiency of the model design. The results of the proposed model are compared with the 
other models discussed in the literature review. Table 3 compares the methods employed, 
indices used for performance evaluation, and the actual error value obtained through 
simulation. This comparison is not exhaustive since the compared models are designed for 
different specifications, sizes, and locations. Also, the metrics used for comparison vary 
widely; no standard error metrics are used in all literature. From Table 3, the numerical 
methods show good performance only in some instances, and the intelligent techniques-
based models like artificial neural networks, fuzzy logic, and ANFIS demonstrate better 
performance in almost all cases. However, the hybrids remain competitive with intelligent 
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Figure 9. MPC structure

Figure 10. Simulation block diagram

Figure 11. Power response in Model Predictive Controller
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performance, speed, and accuracy techniques. However, the design complexity makes it a 
challenge to be implemented widely (Clastres, 2011). Another factor to be discussed is how 
good the predictor is in solar power plant capacity scaling. Since the proposed controller 
is a closed-loop system, carrying the scaling even resolves for unstable controllers if the 
closed-loop system is stable. 

Figure 12. Predicted power response in Model Predictive Controller

Table 3
Comparison of methods employed, indices used for performance evaluation, and the actual error value 
obtained through simulation

Reference Method Performance Index Error Value
Yadav et al., 2019b PSO ANFIS MAPE BPNN – 11.5852

ANFIS – 10.7300
PSO-ANFIS – 3.5196

Ehsan et al., 2014 ANN MSE 0.0198 to 0.025.
Semero et al., 2018 GA- PSO-ANFIS NMAE 5.31
Viswavandya and Mohanty, 
2018

Fuzzy logic & ANFIS MAE ANFIS – 0.067
Fuzzy – 0.187

Abdullah et al., 2019 HFPSO – WT ANFIS MAE 25.6249 to 44.8471
Chugh et al., 2015 Fuzzy Logic MAPE 1.052
Abuella and Chowdhury, 2015 MLRA RMSE 0.0736
Mandal et al., 2012 WT-BPNN &

WT-RBFNN  
RMSE WT+BPNN 0.55 to 2.05

WT+RBFNN 0.32 to 1.57
Ncane and Saha, 2019 Fuzzy & ANN MAE Fuzzy – 1.924

ANN – 2.626
Yadav et al., 2019a GA-ANFIS RMSE 0.023 TO 0.316
Lin and Pai, 2016 ESDLS-SVR RMSE 0.1618 to 0.5502
Our proposed Model MPC SSE 0.8
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The Novelty of the Model

The unique features include a built-in error feedback system for the predictive controller 
and the correlation analysis between the output and input variables performed in the 
system identification block of MATLAB. Correlation analysis identifies the fascinating 
relationships in data and helps us realize the relevance of attributes concerning the 
objectives. It helps optimize the input variables and the data size, which will help in memory 
reduction. Moreover, the proposed model suits building-integrated photovoltaic (BIPV) 
and building-attached photovoltaic (BAPV). If the energy produced and consumed by 
the building are equal, it is called a net-zero energy building. Data availability on power 
generation helps schedule power usage and storage; hence, energy prediction has become 
integral to such buildings. The prediction results can also help in handling overload 
conditions. Furthermore, an additional unit called an automatic overload alert system 
can be integrated with the proposed model. This feature will send a text to the residence 
owner once overload conditions are reached prior to the event. It will allow the residence 
owners to think of future overload prevention strategies. Specifically, this feature could be 
a significant component of smart homes, which are increasing at 15%–18% in metropolitan 
cities and 5%–10 % in other cities of India (Jain, 2016). 

The other advantage includes the ease of tuning and replicating the proposed method, 
making it appropriate for industrial and residential units. Tuning is an easy chore in MPC, 
unlike other machine learning methods, which require an entirely new set of data for 
the changed condition of the SPVS. The numerical methods will require the designers 
to recalculate from the initial stage. The intelligent methods will require tuning, which 
retrains the model with new data sets. However, in the case of hybrids, most models 
need a complete redesign, while the self-evolving models will adapt to the new capacity. 
In the proposed case, tuning is unnecessary since the feedback system in the controller 
automatically upgrades itself for the new capacity even though many control parameters 
are involved in this model predictive controller. 

CONCLUSION 

In this study, the primary focus was on the critical importance of accurate solar power 
prediction, a key factor for solar energy suppliers and grid operators aiming to maintain 
a balanced supply-demand equilibrium within an electrical grid, ultimately impacting 
their profitability. The study harnessed the synergy of enhanced data availability and the 
computational prowess of machine learning algorithms to bolster the optimization and 
overall performance of prediction systems.

The System Identification process and the application of a Model Predictive Controller 
(MPC) were leveraged as potent tools for forecasting renewable energy, specifically in 
the context of solar energy. Real-time sample data from a solar power plant was gathered, 
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forming the basis for accurate predictions. Meteorological data played a pivotal role in 
predicting fluctuations in solar power generation. Data was utilized for system estimation 
and validation using a system identification toolbox, culminating in deriving a transfer 
function that exhibited optimal fitness. The obtained transfer function was incorporated 
into MATLAB’s Model Predictive Controller (MPC) toolbox, where a controller was 
meticulously designed. The designed controller demonstrated exceptional accuracy in 
predicting the output power response for a solar power plant system with the R square 
value of 0.8 and MSE of 0.12.

This research underscores the significance of advanced techniques, such as System 
Identification and Model Predictive Control, in achieving highly precise solar power 
predictions. These findings directly affect the efficient management of solar energy 
resources and their integration into the electrical grid, with potential benefits for suppliers 
and grid operators.

The future scope of this research includes conducting comparative analyses with 
benchmark models, assessing seasonal variations in solar energy prediction, and broadening 
the range of case studies across diverse geographic locations and climates, emphasizing in-
depth Analysis and sensitivity testing to enhance the manuscript’s quality and applicability.
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